G* = = OPERADOR QUÂNTICO DE GRACELI.
EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
{ -1 / G* = ω / T / c} =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =] é um operador cujo observável corresponde à ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI.
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..
Na mecânica quântica, equação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.
A equação propriamente dita é dada por:
- ,
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
na qual m é a massa de repouso do elétron, c é a velocidade da luz, p é o operador momentum linear é a constante de Planck divida por 2π, x e t são as coordenadas de espaço e tempo e ψ(x, t) é uma função de onda com quatro componentes.
Eletrodinâmica quântica (EDQ), ou QED, de Quantum electrodynamics, é uma teoria quântica de campos do eletromagnetismo. A EDQ descreve todos os fenômenos envolvendo partículas eletricamente carregadas interagindo por meio da força eletromagnética. Sua capacidade de predição de grandezas como o momento magnético anômalo do múon e o desvio de Lamb dos níveis de energia do hidrogênio a tornou uma teoria renomada.
História
A eletrodinâmica foi a evolução natural das teorias da antigamente denominada segunda quantização, isto é, quantização dos campos, ao ramo da eletrodinâmica.
As teorias de campo são necessariamente relativísticas, já que admitindo-se que haja partículas mensageiras na troca de energia e momento mediados pelo campo, essas mesmas partículas, a exemplo do fóton (que historicamente precedeu a descoberta das teorias de quantização do campo) devem se deslocar a velocidades próximas ou igual à da luz no vácuo (c = 299 792 458 m/s).
A primeira formulação da eletrodinâmica quântica é atribuída a Paul Dirac, que nos anos 1920 foi capaz de calcular o coeficiente de emissão espontânea do átomo.[1] Essa teoria se desenvolveu a partir dos trabalhos Sin-Itiro Tomonaga, Julian Schwinger e Richard Feynman. Pelos seus trabalhos, eles ganharam o prêmio Nobel de Física em 1965.
Desenvolvimento formal
A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).
O campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.
A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
onde e sua adjunta de Dirac são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.
O oscilador harmônico quântico é o análogo mecânico quântico do oscilador harmônico clássico. É um dos sistemas modelo mais importante em mecânica quântica, já que qualquer potencial pode ser aproximado por um potencial harmônico nas proximidades do ponto de equilíbrio estável (mínimo). Além disso, é um dos sistemas mecânico quânticos que admite uma solução analítica precisa.
Oscilador harmônico monodimensional
Hamiltoniano, energia e autofunções
No problema do oscilador harmônico monodimensional, uma partícula de massa está submetida a um potencial quadrático . Em mecânica clássica se denomina constante de força ou constante elástica, e depende da massa da partícula e da frequência angular .
O Hamiltoniano quântico da partícula é[1]:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
onde é o operador posição e é o operador momento . O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do Hamiltoniano ou valores dos níveis de energia permitidos), temos que resolver a equação de Schrödinger independente do tempo
- .
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
onde representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções são os polinômios de Hermite:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Não se devem confundir com o Hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação para evitar confusões). Os níveis de energia são
- .
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , , , ... de . Este resultado é característico dos sistemas mecânico-quânticos[2].
A segunda é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.
A última razão é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.
Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o Princípio da correspondência.
Aplicação: moléculas diatômicas
Para estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[3]:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
que se relaciona com a frequência angular mediante e depende da massa reduzida da molécula diatômica.
Na mecânica quântica, a equação de Schrödinger é uma equação diferencial parcial linear que descreve como o estado quântico de um sistema físico muda com o tempo. Foi formulada no final de 1925, e publicada em 1926, pelo físico austríaco Erwin Schrödinger.[1]
Na mecânica clássica, a equação de movimento é a segunda lei de Newton, (F = ma) utilizada para prever matematicamente o que o sistema fará a qualquer momento após as condições iniciais do sistema. Na mecânica quântica, o análogo da lei de Newton é a equação de Schrödinger para o sistema quântico (geralmente átomos, moléculas e partículas subatômicas sejam elas livres, ligadas ou localizadas). Não é uma equação algébrica simples, mas, em geral, uma equação diferencial parcial linear, que descreve o tempo de evolução da função de onda do sistema (também chamada de "função de estado").[2]:1–2
O conceito de uma função de onda é um postulado fundamental da mecânica quântica. A equação de Schrödinger também é muitas vezes apresentada como um postulado separado, mas alguns autores[3]:Capítulo 3 afirmam que pode ser derivada de princípios de simetria. Geralmente, "derivações" da equação demonstrando sua plausibilidade matemática para descrever dualidade onda-partícula. A equação de Schrödinger, em sua forma mais geral, é compatível tanto com a mecânica clássica ou a relatividade especial, mas a formulação original do próprio Schrödinger era não-relativista.
A equação de Schrödinger não é a única maneira de fazer previsões em mecânica quântica — outras formulações podem ser utilizadas, tais como a mecânica matricial de Werner Heisenberg, e o trajeto da integração funcional de Richard Feynman.
Soluções
Na interpretação padrão da mecânica quântica, a função de onda é a descrição mais completa que pode ser dada a um sistema físico. A função de onda - um objeto matemático que especifica completamente o comportamento dos elétrons em uma molécula - é central tanto para a química quântica quanto para a equação de Schrödinger. A função de onda é uma entidade de alta dimensão e, portanto, é extremamente difícil capturar todas as nuances que codificam como os elétrons individuais afetam uns aos outros. Muitos métodos da química quântica na verdade desistem de expressar a função de onda por completo, em vez de tentar apenas determinar a energia de uma dada molécula. No entanto, isso requer que sejam feitas aproximações, limitando a qualidade da previsão de tais métodos.
As soluções para a equação de Schrödinger descrevem não só sistemas moleculares, atômicas e subatômicas, mas também os sistemas macroscópicos, possivelmente, até mesmo todo o universo.[4]:292ff A melhor das soluções, a rede neural profunda é uma maneira de representar as funções de onda dos elétrons. Em vez da abordagem padrão de compor a função de onda a partir de componentes matemáticos relativamente simples, os desenvolvedores projetaram uma rede neural artificial capaz de aprender os padrões complexos de como os elétrons estão localizados ao redor dos núcleos. Quando dois elétrons são trocados, a função de onda deve mudar seu sinal. Para que a solução funcione, essa propriedade foi construída na arquitetura da rede neural. Esse recurso é conhecido como princípio de exclusão de Pauli.[5] Além do princípio de exclusão de Pauli, as funções de onda eletrônica também têm outras propriedades físicas fundamentais, e o sucesso da abordagem PauliNet é que ela integra essas propriedades na rede neural profunda, em vez de permitir que o aprendizado profundo as decifre apenas observando os dados. Com esta abordagem de 2020, as possibilidades se abrem para resolver problemas nas ciências moleculares e materiais.[6]
Equação
Equação dependente do tempo
Usando a notação de Dirac, o vetor de estados é dado, em um instante por . A equação de Schrödinger dependente do tempo, então, escreve-se:[7]
Equação de Schrödinger Dependente do Tempo (geral)
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Em que é a unidade imaginária, é a constante de Planck dividida por , e o Hamiltoniano é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.
Equação independente do tempo
Equação unidimensional
Em uma dimensão, a equação de Schrödinger independente do tempo para uma partícula escreve-se:[8]
- ,
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
em que é a função de onda independente do tempo em função da coordenada ; é a constante de Planck dividida por ; é a massa da partícula; é a função energia potencial e é a energia do sistema.
Equação multidimensional
Em mais de uma dimensão a equação de Schrödinger independente do tempo para uma partícula escreve-se:[9]
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
em que
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
é o operador laplaciano em dimensões aplicado à função .
Relação com outros princípios
Uma maneira mais didática de observar a equação de Schrödinger é em sua forma independente do tempo e em uma dimensão. Para tanto, serão necessárias três relações:
Definição de Energia Mecânica:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Equação do Oscilador harmônico:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Relação de De Broglie:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Onde é a função de onda, é o comprimento de onda, h é a constante de Planck e p é o momento linear.
Da Relação de De Broglie, temos que , que pode ser substituída na equação do Oscilador Harmônico:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Rearranjando a equação de energia, temos que ,
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
substituindo na equação anterior:
,
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
definindo , temos:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Que é a Equação Independente do Tempo de Schrödinger e também pode ser escrita na notação de operadores:
, em que é o Operador Hamiltoniano operando sobre a função de onda.
Partícula em uma caixa rígida
Oscilador harmônico quântico
Assim como na mecânica clássica, a energia potencial do oscilador harmônico simples unidimensional é:[10]
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Lembrando a relação ,
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
também pode se escrever:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Então a equação de Schrödinger para o sistema é:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Solucionando a equação de Schrödinger, obtém-se os seguintes estados estacionários:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
em que Hn são os polinômios de Hermite.
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
E os níveis de energia correspondentes são:
/
G* = = [ ] ω , , / T / c [ [x,t] ] =
Isso ilustra novamente a quantização da energia de estados ligados.

Comentários
Postar um comentário